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Pushing the limits of colliders for discovery ..

For a circular ring with radius R and average bending field
B

E ' [ 0.3 TeV/(T km) ] B R

Synchrotron radiation energy loss per turn
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R

makes circular geometry impractical at high energy for
electron machines, forcing single pass
proton machines typically have O(billion) passes
Beamstrahlung smears energy resolution even for a linear
e+e- collider
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Muon-based machines?

Fundamental lepton (like e), no internal degrees of
freedom to absorb CoM energy

Beamstrahlung suppressed allowing excellent energy
resolution
Much lower synchrotron radiation losses, recirculating
geometry possible
Unstable, 2.2 µs lifetime at rest
Average number of turns in a storage ring before decay

N ' (300/T) B

Decays result in heat load on magnets and backgrounds in
detectors
Neutrino interactions can lead to offsite radiation hazard at
very high energies
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Yağmur Torun MICE – APT Seminar – Mar 2, 2020 3 / 46



Muon-based machines?

Fundamental lepton (like e), no internal degrees of
freedom to absorb CoM energy
Beamstrahlung suppressed allowing excellent energy
resolution
Much lower synchrotron radiation losses, recirculating
geometry possible
Unstable, 2.2 µs lifetime at rest

Average number of turns in a storage ring before decay

N ' (300/T) B

Decays result in heat load on magnets and backgrounds in
detectors
Neutrino interactions can lead to offsite radiation hazard at
very high energies
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Muon accelerators

No natural source for efficient production like e, p
High-power proton beam on target, solenoidal capture of
low-energy charged pions
which decay into a muon cloud with large phase space
volume
OK for a Neutrino Factory, additional cooling required for a
Muon Collider
Short lifetime means all beam manipulations must be
completed before the muons decay
Ionization cooling the only known practical technique
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Muon accelerators
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NuSTORM – a hybrid Neutrino Factory
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Ionization cooling

Energy absorbers to shrink momentum vector

Longitudinal component restored with acceleration,
resulting in transverse cooling
Longitudinal cooling requires momentum-dependent
path-length through absorbers
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Ionization Cooling

Normalized transverse emittance ε of muon beam in solenoidal
channel

dε
ds
' −

〈 dE
ds

〉
β2E

(ε− ε0), ε0 '
0.875MeV〈 dE

ds

〉
X0

β⊥
β

ε0: equilibrium emittance (multiple scattering ∼ cooling)

Efficient cooling requires:

Absorber with large ∆E per radiation length
(LH2: 254 MeV, LiH: 151MeV)

Strong focusing (large B-field), β⊥ ∼ p/B

High-gradient rf to replace longitudinal
momentum

Tight packing to minimize decay losses

Low muon momentum
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27. Passage of particles through matter 5
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Figure 27.3: Mean energy loss rate in liquid (bubble chamber) hydrogen, gaseous
helium, carbon, aluminum, iron, tin, and lead. Radiative effects, relevant for
muons and pions, are not included. These become significant for muons in iron for
βγ >∼ 1000, and at lower momenta for muons in higher-Z absorbers. See Fig. 27.21.

Eq. (27.1) may be integrated to find the total (or partial) “continuous slowing-down
approximation” (CSDA) range R for a particle which loses energy only through ionization
and atomic excitation. Since dE/dx depends only on β, R/M is a function of E/M or
pc/M . In practice, range is a useful concept only for low-energy hadrons (R <∼ λI , where
λI is the nuclear interaction length), and for muons below a few hundred GeV (above
which radiative effects dominate). R/M as a function of βγ = p/Mc is shown for a
variety of materials in Fig. 27.4.

The mass scaling of dE/dx and range is valid for the electronic losses described by the
Bethe-Bloch equation, but not for radiative losses, relevant only for muons and pions.

For a particle with mass M and momentum Mβγc, Tmax is given by

July 24, 2008 18:04
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Muon Ionization Cooling Experiment

Demonstration of ionization cooling in a setting relevant to
muon accelerators

measure performance in various modes of operation and
beam conditions, thereby investigating the limits and
practicality of cooling
study aspects critical to performance (multiple scattering,
energy loss, phase space evolution)
validate design & simulation tools

Concept
track each muon before & after cooling hardware
form virtual beams in offline software
designed for measuring relative change in emittance to 1%
accelerator R&D in the form of a particle physics
experiment
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Layout

Particle ID –
Momentum
measurement

– Cooling – Momentum
measurement

– Particle ID

LiH, LH2, polyethylene (wedge) absorbers
solenoid (same sign coils) and (sign) flip optics modes
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Layout
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Beamline

Ti target dips into ISIS halo to produce pions
muon decay solenoid, momentum selection, focusing
120-260 MeV/c muons, >99% purity
2-10mm emittance using diffuser
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Cooling apparatus

Absorbers
35-cm-thick LH2
6.5-cm-thick LiH
polyethylene 45o-wedge

contained within dual-coil magnet for low-β⊥ focus
40-cm-bore 5-coil spectrometer solenoids providing
uniform 4T-field for momentum measurement
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Detectors

2 threshold Cherenkov counters upstream
3 ToF walls with 2 planes of scintillator bars each
2 scintillating fiber trackers to reconstruct helical path, each
with 5 stations and 3 doublet views/station using 0.35mm
fibers and VLPC readout (D0 technology)
Lead-scintillator preshower detector (KL) downstream
Totally active scintillator calorimeter (EMR) downstream
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Analysis status

Full suite of tools with detailed material and field
distributions
Excellent agreement for beam profiles
(upstream/downstream), transmission
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Measuring beam cooling

Transverse normalized emittance commonly used to
characterize phase space volume

works well for Gaussian beam through linear optics with no
losses
not as useful in the presence of nonlinear effects and
limited transmission (eg. scraped beam)

Ionization cooling demonstration in MICE
strong coupling between transverse dimensions in
solenoidal focusing
high precision required for detailed comparison in a wide
range of beam and optics parameters
including cases with limited transmission

Use quantities that are robust and relevant
transverse amplitude
subemittance, fractional emittance
phase space density, core volume
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Emittance

Normalized RMS transverse 4D emittance ε⊥

ε⊥ =
1

mµ c
|Σ|1/4

defined through phase space covariance matrix Σ

Σ =


σxx σxpx σxy σxpy

σpx x σpx px σpx y σpx py

σyx σypx σyy σypy

σpy x σpy px σpy y σpy py

 , σab = 〈(a−〈a〉)(b−〈b〉)〉

corresponds to volume V of 4D rms ellipsoid and indicates an
average phase space density

ρ =
N
V

=
2
π2

N
|Σ|1/2
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Evolution of RMS emittance

solenoid mode optics, LiH absorber, 6-mm 140-MeV/c
input beam
limited transmission + betatron motion
⇒ large apparent cooling at downstream tracker plane
rms emittance is a poor indicator in this case
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Transverse single-particle amplitude
Defined as

A⊥ = ε⊥ uT Σ−1 u

for centered phase
space coordinates

v = (x ,px , y ,py )

u = v− 〈v〉

Associated with phase space
volume similar to rms ellipsoid
(emittance)
Provides density estimate at every
sample point

ρ(vi) = ρ0 exp
[
−1

2
A⊥
ε⊥

]
Allows identification of
low A⊥ ⇔ high ρ core
high A⊥ ⇔ low ρ tail
Highest amplitude particles can be
removed iteratively to prevent bias
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Amplitude reconstruction example [simulation]

6-mm 140-MeV/c input beam, solenoid mode optics
Last (most downstream) measurement plane
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Poincaré sections [data] (upstream)
6-mm 140-MeV/c beam – flip mode – LiH
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Yağmur Torun MICE – APT Seminar – Mar 2, 2020 22 / 46



Poincaré sections [data] (downstream)
6-mm 140-MeV/c beam – flip mode – LiH
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Layout and Magnetic Field
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Phase Space – 6-140 Setting – LH2
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Amplitude Distributions
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Amplitude Distribution Ratios
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Density Quantiles
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Outlook

Unique single-particle measurement capabilities, large
data sets and mature analysis tools of MICE allow detailed
studies of the beam phase space

Amplitude based analysis used to avoid artifacts due to
nonlinear transport
Core density/volume used for selecting the portion of the
beam that is transmitted
Non-parametric density estimators substantially
independent of the underlying distribution

Successful demonstration of ionization cooling in realistic
environment

Techniques/results directly applicable to practical muon
accelerators
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RF in MICE

Initial MICE design included 201-MHz RF acceleration
modules
An RF module prototype was assembled and tested at
Fermilab up to 50% higher than design gradient
2 production modules were built at LBNL and crated up for
shipping
Experiment was de-scoped and the RF stage removed
from the timeline
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Subemittance

For a parent beam of n particles, select a fraction α from
the core
α-amplitude Aα is the largest amplitude in the α-sample

Aα = ε⊥ at α=9% for Gaussian beam in 4D

9% is the 1-σ volume fraction in 4D
α-subemittance eα is defined as the rms emittance of the
α-sample

eα ≤ ε⊥
If an identical fraction α is selected upstream and
downstream

∆Aα
Aα

=
∆eα
eα

=
∆ε⊥
ε⊥

for Gaussian core with full transmission
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Subemittance evolution
6-mm 140-MeV/c beam – flip mode – LiH
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Fractional emittance

The α-fractional emittance εα is defined as the phase
space volume occupied by the core fraction α of the parent
beam.
Found by calculating the volume of the convex hull of the
α-sample (smallest convex set containing all the points)

For α = 9%

εα =
1
2

(πm c ε⊥)2

For small change

δ =
∆ε⊥
ε⊥
� 1→ ∆εα

εα
' 2δ
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Fractional (9%) emittance evolution
6-mm 140-MeV/c beam – flip mode – LiH
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Non-parametric density estimation

Amplitude based methods work well for Gaussian core,
small fraction of a nonlinear beam
Non-parametric density estimators can be used to extend
the analysis
Several methods considered including

optimally binned histograms
k-nearest neighbors (kNN)
tessellation density estimators (TDEs)
kernel density estimation (KDE)

kNN and KDE examples follow
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k-Nearest neighbor algorithm

To find the density ρ(x) at a
point x in phase space, identify
nearby data points xi . Using
the distance Rk to the
k th-nearest point

ρ(x) =
k

V (Rk )

where V (Rk ) is the volume of
the 4-ball with radius Rk

V = π2R4
k/2

Near optimal results for

k =
√

n
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kNN density estimate [simulation]

6-mm 140-MeV/c input beam, solenoid mode optics
Last (most downstream) tracker plane
reconstructed 4D density projected to (y ,py ) = (0,0)
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Poincaré sections [kNN + data] (upstream)
6-mm 140-MeV/c beam – solenoid mode – LiH
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Poincaré sections [kNN + data] (downstream)
6-mm 140-MeV/c beam – solenoid mode – LiH
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Yağmur Torun MICE – APT Seminar – Mar 2, 2020 39 / 46



Contour levels

Given the cumulative distribution function F for the beam
find the density level ρα (α-quantile, inverse of CDF) for the
contour that encloses core fraction α of the beam

ρα = ρ(F−1(α))

The evolution of ρα shows cooling (ratio independent of α
in any dimension for purely Gaussian input/output beams)

Can also use the volume of phase space Vα that has
ρ > ρα

Yağmur Torun MICE – APT Seminar – Mar 2, 2020 40 / 46



(9%) Contour density evolution (kNN)
6-mm 140-MeV/c beam – LiH – flip
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(9%) Contour volume evolution (kNN)
6-mm 140-MeV/c beam – LiH – flip
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Kernel density estimation

Density estimate ρ at point x

ρ(x) =
1

nh

n∑
i=1

K (
x − xi

h
)

where K is called the kernel function∫
K (x) dx = 1

and h, the bandwidth parameter. For
d-dimensional phase space, use
Gaussian kernel

ρ(x) ∝
∑

i

exp
[
−1

2
(x− xi)

T Σ−1(x− xi)

]
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KDE example

Gaussian beam with 100k
muons through quadrupole
evaluated on 1k x 1k grid
2D contour density and
area conserved
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Emittance exchange

Cooling mainly transverse in a linear channel

Longitudinal cooling requires momentum-dependent
path-length through the energy absorbers

Wedge shaped polyethylene absorber for demonstration of
(reverse) emittance exchange in MICE
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Reverse emittance exchange
6mm 140-MeV/c beam – polyethylene wedge
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Reverse emittance exchange
6mm 140-MeV/c beam – polyethylene wedge

  

No RF→ longitudinal
space is 1D (E)

Longitudinal heating

4D transverse phase
space (x ,px/〈p〉, y ,py/〈p〉)

Transverse cooling
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